The thermal decomposition of 4-bromobutyric acid in the gas phase: A quantum chemical theory calculation
نویسندگان
چکیده
The gas-phase elimination kinetic of 4-bromobutyric acid to give butyrolactone, and hydrogen bromide was studied using Density Functional Theory (DFT) and Mǿller-Plesset Perturbation Theory of Second Order (MP2) to investigate the more reasonable reaction mechanism. Good agreement of calculated activation parameters with the experimental values was obtained when using PBEPBE/6-31++G(d,p) level of theory. Analysis of the calculated thermodynamic and kinetic parameters suggested the reaction mechanism is unimolecular with involvement of the hydroxyl oxygen of the carboxylic moiety of the substrate assisting the exit of bromide in nucleophilic substitution. The alternate mechanism with the participation of the carbonyl oxygen in a slow step to give an intimate ion-pair intermediate was disregarded due to the high energy of activation. Bond order analysis shows the process is dominated by the breaking of the C-Br bond. The reaction can be described as unimolecular and moderately non-synchronous process.
منابع مشابه
Quantum Chemical Modeling of 2-(Cyclohexylamino)-2-oxo-1-(quinolin-4-yl)ethyl 4-Chlorobenzoate: Molecular Structure, Spectroscopic (FT-IR, NMR, UV) Investigations, FMO, MEP and NBO Analysis Based on HF and DFT Calculations
In the present work, the quantum theoretical calculations of the molecular structure of the compound 2-(Cyclohexylamino)-2-oxo-1-(quinolin-4-yl)ethyl 4-Chlorobenzoate have been predicted using Density Functional Theory (DFT) in the gas phase. The geometry of the title structure was optimized by B3LYP/6-31+G* and HF/6-31+G* levels of theory. The theoretical 1H and 13C NMR chemical shift values o...
متن کاملStudy on the Thermal Decomposition Kinetics and Calculation of Activation Energy of Degradation of Poly(o-toluidine) Using Thermogravimetric Analysis
Thermo Gravimetric Analysis (TGA) analysis was employed to investigate activation energy (Ea) for the process of degrading of poly(o-toluidine) (POT) applying Horwitz & Metzger, Coats & Redfern and Chan et al., methods. POT was synthesized by chemical oxidative polymerization method using Ammonium per Sulphate (APS) as an oxidant while Dodecylbenzene Sulphonic Acid (DBSA) and sul...
متن کاملA quantum-mechanical investigation of functional group effect on 5,5'-disubstituted-1,1'-azobis(tetrazoles)
The present work reports the detailed B3LYP/6-311++G(d,p) study of most stable transand cisconfigurations photoisomerization in the core system of computational photochemistry-the 5,5'-disubstituted-1,1'-azobis (tetrazole) molecules. All computations were carried out in gas phase attemperature 293.15 K and pressure 1 atm. Firstly; the potential energy surface (PES) of the groundstate of the mol...
متن کاملAb Initio Calculation 29Si NMR Chemical Shift Studies on Silicate Species in Aqueous and Gas Phase
Nowadays NMR spectroscopy becomes a powerful tool in chemistry because of the NMR chemical shifts. Hartree–Fock theory and the Gauge-including atomic orbital (GIAO) methods are used in the calculation of 29Si NMR chemical shifts of various silicate species in the silicate solution as initial components for zeolite synthesis both in gas and solution phase. Calculations have been performed at geo...
متن کاملSynthesis of CuO nanorods via thermal decomposition of copper-dipicolinic acid complex
Template-free CuO nanorods were synthesized through a three-step chemical method with no water-insoluble materials. The first step included the preparation of a Cu-complex, which was obtained from dipicolinic acid, L-lysine, and copper nitrate. Then, as the second step, the obtained solution was allowed to be relaxed for a week to and formation of some blue single-crystals single crystals, whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Meth. in Science and Engineering
دوره 12 شماره
صفحات -
تاریخ انتشار 2012